skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hodapp, Klaus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A successful theory of star formation should predict the number of objects as a function of their mass produced through star-forming events. Previous studies in star-forming regions and the solar neighborhood have identified a mass function increasing from the hydrogen-burning limit down to about 10MJ. Theory predicts a limit to the fragmentation process, providing a natural turnover in the mass function down to the opacity limit of turbulent fragmentation, thought to be near 1–10MJ. Programs to date have not been sensitive enough to probe the hypothesized opacity limit of fragmentation. We present the first identification of a turnover in the initial mass function below 12MJwithin NGC 2024, a young star-forming region. With JWST/NIRCam deep exposures across 0.7–5μm, we identified several free-floating objects down to roughly 3MJwith sensitivity to 0.5MJ. We present evidence for a double power-law model increasing from about 60MJto roughly 12MJ, consistent with previous studies, followed by a decrease down to 0.5MJ. Our results support the predictions of star and brown dwarf formation theory, identifying the theoretical turnover in the mass function and suggesting the fundamental limit of turbulent fragmentation to be near 3MJ
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  2. Abstract Observed changes in protostellar brightness can be complicated to interpret. In our James Clerk Maxwell Telescope (JCMT) Transient Monitoring Survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest 30% brightness increase at 850 μ m, caused by a factor of 1.8–3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then a shallower decay. A second rise occurred soon after the decay, and the source is still bright one year later. The mid-IR emission, the small-scale CO outflow mapped with ALMA, and the location of variable maser emission indicate that the variability is associated with the SW component. The near-IR and NEOWISE W1 and W2 emission is located along the blueshifted CO outflow, spatially offset by ∼3 to 4″ from the SW component. The K -band emission imaged by UKIRT shows a compact H 2 emission source at the edge of the outflow, with a tail tracing the outflow back to the source. The W1 emission, likely dominated by scattered light, brightens by 0.7 mag, consistent with expectations based on the submillimeter light curve. The signal of continuum variability in K band and W2 is masked by stable H 2 emission, as seen in our Gemini/GNIRS spectrum, and perhaps by CO emission. These differences in emission sources complicate IR searches for variability of the youngest protostars. 
    more » « less
  3. Abstract Silicon and strontium are key elements to explore the nucleosynthesis and chemical evolution of the Galaxy by measurements of very metal-poor stars. There are, however, only a few useful spectral lines of these elements in the optical range that are measurable for such low-metallicity stars. Here we report on abundances of these two elements determined from near-infrared high-resolution spectra obtained with the Subaru Telescope Infrared Doppler instrument. Si abundances are determined for as many as 26 Si lines for six very and extremely metal-poor stars (−4.0 < [Fe/H] < −1.5), which significantly improves the reliability of the abundance measurements. All six stars, including three carbon-enhanced objects, show over-abundances of Si ([Si/Fe] ∼ +0.5). Two stars with [Fe/H] ∼ −1.5 have relatively small over-abundances. The [Mg/Si] ratios agree with the solar value, except for one metal-poor star with carbon excess. Strontium abundances are determined from the triplet lines for four stars, including two for the first time. The consistency of the Sr abundances determined from near-infrared and optical spectra require further examination from additional observations. 
    more » « less
  4. null (Ed.)
  5. We are building a next-generation laser adaptive optics system, Robo-AO-2, for the UH 2.2-m telescope that will deliver robotic, diffraction-limited observations at visible and near-infrared wavelengths in unprecedented numbers. The superior Maunakea observing site, expanded spectral range and rapid response to high-priority events represent a significant advance over the prototype. Robo-AO-2 will include a new reconfigurable natural guide star sensor for exquisite wavefront correction on bright targets and the demonstration of potentially transformative hybrid AO techniques that promise to extend the faintness limit on current and future exoplanet adaptive optics systems. 
    more » « less